
 NL1-1

 N E W S L E T T E R # 1

 November 1979

 This is the first edition of The Soft Warehouse Newsletter. It
will be devoted to bringing our customers up to da te on the latest
news, updates, and products of The Soft Warehouse . We invite your
suggestions and complaints regarding your encounte rs with either of
our software systems. Also we hope to provide a medium for the
exchange of programs and ideas concerning bot h muLISP-79 and
muSIMP/muMATH-79. We welcome short contributions or announcement s
regarding your current application for our product s. The content,
level and format of this newsletter will evolve a ccording to your
desires. Current plans are to publish every 4 mont hs; however, this
too is flexible depending on interest.

 Our software has been distributed for over 3 m onths now, and we
are pleased to report that we have received word o f only two minor
problems. One was a conflict with a particular disk operating
system BIOS. That problem was resolved by making a minor change to
the muSIMP and muLISP interpreter code. The oth er problem only
affects muMATH users having systems with a relati vely small amount
of memory (i.e. 32K and less). The symptom and c ure are described
below under the heading "A Non-Recursive MATCH Func tion".

 The Newsletter is divided into two sections corresponding to
our products. This issue we are contributing some clarifications,
modifications, and extensions which should prove us eful.

 * * * * * * * T h e m u M A T H e m a t i c i a n * * * * * *

 A TAYLOR Series Expansion Function

 Here is a simple muMATH function which produces an N-degree
Taylor series expansion of a sufficiently differen tiable expression
EXPN about the point X = A:

 FUNCTION TAYLOR (EXPN, X, A, N,
 % Local: % J, C, ANS, NUMNUM, DENNUM) ,
 NUMNUM: DENNUM: 30,
 J: ANS: 0, C: 1,
 LOOP
 ANS: ANS + C * EVSUB (EXPN, X, A),
 WHEN J=N, ANS EXIT,
 EXPN: DIF (EXPN, X),
 J: J + 1,
 C: C * (X-A) / J,
 ENDLOOP,
 ENDFUN $

 RDS() $

 NL1-2

..
 Use your computer's text editor to create the file TAYLOR.DIF
containing the definition of the TAYLOR function gi ven above. Then,
after building a muMATH system that includes as a minimum the
differentiation package, DIF.ALG, you can load TAY LOR.DIF using the
RDS command:

 RDS (TAYLOR, DIF);

 After the file has has been read in, you can, for example, find
the first 5 terms of the Taylor expansion of e x about the point x=0,
by entering the expression

 TAYLOR (#E^X, X, 0, 5);

muMATH will respond with the series

 1 + X + X^2/2 + X^3/6 + X^4/24 + X^5/120

 A muSIMP-79 WRITE Command

 Although the muSIMP WRS function can be used to direct output
to a disk file, standard muSIMP output includes the prompt and
herald, while suppressing all but the result of an assignment.
Thus, WRS alone is fine for saving output for subs equent display or
printing, but it is not sufficient for saving the values of
variables for use at a later time. What is nee ded is a WRITE
command which, when used in the form

 WRITE (fname, ftype, var1, var2, ... varN);

generates a file named "fname" of type "ftype" on the current
drive containing the successive muSIMP command stat ements:

 var1: value1;
 var2: value2;
 . .
 . .
 . .
 varN: valueN;
 RDS ();

where each value is that of the corresponding variable. The
following is a muSIMP definition for the subroutine WRITE which can
be transcribed using the text editor supplied with your computer's
operating system:

 SUBROUTINE WRITE LEX1,
 WRITE1 (FIRST(LEX1), SECOND(LEX1), RRES T(LEX1))
 ENDSUB$

 NL1-3

 FUNCTION WRITE1 (FNAME, FTYPE, LEX1),
 WHEN NOT WRS (FNAME, FTYPE),
 PRINTLINE ("Improper file name or typ e"),
 FALSE EXIT,
 LOOP
 WHEN EMPTY (LEX1) EXIT,
 PRINT (FIRST (LEX1)),
 PRINT (": "),
 PRTMATH (EVAL (FIRST (LEX1)), 0, 0, T RUE),
 PRINT (';), NEWLINE (), NEWLINE (),
 LEX1 : REST (LEX1),
 ENDLOOP,
 PRINTLINE ("RDS ();"),
 WRS (),
 TRUE,
 ENDFUN $

 RDS () $

 After a file has been generated by using the W RITE command, the
assignments to the variables can be re-establish ed with an RDS
command of the form:

 RDS (fname, ftype, drive);

 A RANDOM Number Generator

 The following pseudo-random number genera tor is designed
according to the principles described by Knuth in "The Art of
Computer Programming, Vol. 2" (Addison-Wesley). The user should
initialize the global variable named SEED to any ar bitrary integer,
such as one derived from the time of day. Then, each successive
invoking of RANDOM () yields the next number in a sequence which is
uniformly distributed over the range 0 through 9999 990, inclusive:

 FUNCTION RANDOM (),
 SEED: MOD (2113233 + 314157*SEED, 999 9991)
 ENDFUN $

 A Non-Recursive MATCH Function

 Although valid, the recursive definition of t he function MATCH
(line 266 in the 7/27/79 version of file MUSMORE. MUS) can cause a
stack overflow to occur while parsing in some long function defini-
tions or mathematical expressions, especially for relatively small
systems (i.e. 32K and less). Thus it should be r eplaced with the
following iterative definition:

 FUNCTION MATCH (DELIM, LEX1),
 LEX1: FALSE,
 LOOP
 BLOCK
 WHEN SCAN = COMMA,

 NL1-4

 SCAN () EXIT,
 ENDBLOCK,
 WHEN SCAN = DELIM,
 SCAN (),
 LEX1 EXIT,
 WHEN DELIMITER (),
 SYNTAX (DELIM, "NOT FOUND") EXIT,
 LEX1: CONCATEN (LEX1, LIST (PARSE(SCA N,0))),
 ENDLOOP,
 ENDFUN $

 A DRIVER Function Mod to Save Node Space

 The following change to the DRIVER Function de fined around line
160 in file MUSMORE.MUS will free a number of nodes while parsing an
expre-sion:

 ENDBLOCK,
 EX1: FALSE %This is the new line to add%
 EX1: PARSE (SCAN(), 0),
 EX2: SCAN,

 Simplified MATRIX and EQUATION Operators

 It is easy to forget and use ^ rather than " ^ " with blanks
and quotes to indicate muMATH matrix powers, including inverses.
Thus, the following replacement for "Optional Matri x Power & Inverse
Package" in the 7/16/79 version of file MATRIX.ARR makes ^ work for
matrix powers, at the (admittedly minor) expens e of no longer
indicating elementwise powers for the elements of a rrays:

 PROPERTY BASE, [, FUNCTION (EX1, LEX1),
 (ADJOIN ('[, LEX1) . IDMAT (LENGTH (LEX 1))) ^ EX1
 ENDFUN $

 PROPERTY BASE, {, FUNCTION (EX1, LEX1),
 WHEN EX1 = -1,
 ADJOIN ('{, LEX1) \ IDMAT (LENGTH (LE X1)) EXIT,
 WHEN ZERO (EX1),
 IDMAT (LENGTH (LEX1)) EXIT,
 WHEN EX1 = 1,
 ADJOIN ('{, LEX1) EXIT,
 WHEN POSITIVE (EX1),
 ADJOIN ('{, LEX1) . ADJOIN ('{, LEX1) ^(EX1-1) EXIT,
 WHEN NEGATIVE (EX1),
 (ADJOIN ('{, LEX1) ^ -1) ^ -EX1 EXIT,
 LIST ('^, ADJOIN ('{, LEX1), EX1),
 ENDFUN $

Naturally, file MATRIX.DOC should be modified accor dingly.

 NL1-5

 The DEAR ALGY Column

 DEAR ALGY: Although RECLAIM () indicated sufficient space
 for a condensed version of a file, I ran out o f space while
 trying to RDS it with CONDENSE TRUE. -- Perplexed

 DEAR PERPLEXED: For each function definition or property value,
the parser generates an uncondensed version, then the condenser (if
active) builds a condensed version, after which the uncondensed
version can be reclaimed. Thus, temporary space re quirements exceed
the ultimate requirements. To minimize ths effect move any lengthy
function definitions and property values toward the beginning of the
file, at the admittedly minor expense of violati ng our bottom-up
ordering style. Alternatively, such long definit ions near the end
of the file could be subdivided into several defini tions. Also it
will save space to make the change to the DRIVER f unction described
above.

 DEAR ALGY: How come I have sufficient space if I do RECLAIM
 () before a certain computation but not if I omit the
 RECLAIM? -- Baffled

DEAR BAFFLED: As a programming convenience #ANS is always bound to
the last expression computed. If that expression is lengthy, it ties
up a lot of node and vector space which would oth erwise be free.
Thus if #ANS is no longer required and the next exp ression will also
be lengthy, inserting any computation yielding a sh ort #ANS, such as
"RECLAIM ()" or "1", frees substantial space.

 DEAR ALGY: What is the purpose of STOP near the end of most
 files? -- Curious Yellow

DEAR CURIOUS YELLOW: In the event someone wants to write a function
which loads in a sequence of files, the special va lue "STOP" can be
used to regain control before RDS () returns control to the
terminal. To date we have not used this feature a lthough we may in
the future.

 DEAR ALGY: I have only one single-density minifloppy drive.
 There is not enough room on one diskette for muSIMP, the
 muMATH source files and a SYS file. Also, as warned by the
 operating system manual, the disk directory g ets messed up
 if I change diskettes before making a SYS file, because the
 write operation is not preceeded by a control- C. To make
 matters worse, I am unable to save the system using Method
 "A" described in file READ1ST.TXT because my C P/M will not
 save that large a file. Am I doomed to bui lding muMATH
 every time I want to use it? -- Disheartened

DEAR DISHEARTENED: A one-drive system is masochistic, especially if
it is a single-density single-sided minifloppy . I strongly
recommend buying a second drive if you value your time and peace of

 NL1-6

mind. However, if you wish to operate und er such trying
circumstances, here is how you can generate a SYS f ile:

1. Save a copy of MUSIMP79.COM on a fresh diskette .
2. Build a muMATH System as describe in READ1ST.TX T up to the point
 of saving the System.
3. Remove the diskette with the source files on i t and mount the
 fresh diskette.
4. Type a Control-C which will return control to t he DOS.
5. Using the front panel switches or a resident monitor program,
 start execution beginning at location 100H.
6. The system should respond with the muSIMP logon prompt.
7. Execute the muSIMP SAVE Command as describ ed in the file
 READ1ST.TXT.

* * * * * * * * * * T h e m u L I S P e r * * * * * * * * * *

 M E T A M I N D

 METAMIND is a computer version of the Master Mind (c) game
produced by INVICTA. It is a good test of your lo gical abilities.
The object is to break a color code made up by your opponent. The
biggest problem in playing the game is finding som eone to make the
code and doing the rather tedious chore of providin g you hints. The
following program generates such a code and provid es the requisite
hints. It also contains several useful subrouti nes such as the
random number generator which may prove helpful i n other applica-
tions.

 (SET ECHO)
 (PUTD DRIVER (QUOTE (LAMBDA (RDS WRS)
 (LOOP
 (APPLY (READ) (READ))))))
 (DRIVER TRUE)

 PUTD (METAMIND (LAMBDA (KEYLIST SEED)
 (TERPRI) (TERPRI) (SPACES 18)
 (PRINT "Welcome to METAMIND!!_") (TERPRI) (T ERPRI)
 (SETQ KEYLIST (QUOTE (
 (BLU GRN WHI YEL RED BLK)
 (RED YEL GRN BLK BLU WHI)
 (BLK BLU YEL GRN WHI RED)
 (YEL WHI RED BLK BLU GRN)
)))
 (LOOP
 (PRIN1 "Please enter any random number bet ween 1 and 100: ")
 (SETQ SEED (RATOM))
 (TERPRI)
 ((PLUSP SEED)))
 (TERPRI)
 (PRINT "Let me think of a code.")
 (TERPRI) (RECLAIM) (RECLAIM)

 NL1-7

 (PRINT "Ok, I have got one, now make a guess by typing in 4")
 (PRINT "of the colors in the following list: ")
 (SPACES 10) (PRINT (CAR KEYLIST))
 (PRINT "Then after you type a carriage retur n, I will tell you")
 (PRINT "the number of blacks (i.e. the numbe r of guesses of the")
 (PRINT "right color and right column), a spa ce, and the number")
 (PRINT "of whites (i.e. of the remaining non -black guesses, the")
 (PRINT "number of correct colors).")
 (TERPRI)
 (LOOP
 (CODEMAKER)
 (TERPRI)
 (TERPRI))))

 PUTD (CODEMAKER (LAMBDA (CODE MOVE CTR)
 (SETQ KEYLIST (MAPLIST KEYLIST PERMUTE))
 (SETQ CODE (MKCODE KEYLIST))
 (SETQ CTR 1)
 (LOOP
 (SPACES 8) (PRIN1 "Move: ") (PRIN1 CTR) (S PACES 4)
 ((CODEMATCH CODE (READMOVE CODE) 0)
 (TERPRI) (PRIN1 "That took ") (PRIN1 CTR)
 (((EQ CTR 1)
 (PRINT " move."))
 (PRINT " moves."))
 ((LESSP CTR 6)
 (PRINT "Hey you're good, let's play again!"))
 ((LESSP CTR 8)
 (PRINT "That was a hard one, want to try to impr ove your score?"))
 (PRINT "Wow, you are lousy, better stick to chess."))
 (TERPRI)
 (SETQ CTR (ADD1 CTR)))))

 PUTD (MAPLIST (LAMBDA (LST FUN)
 ((NULL LST) NIL)
 (CONS (FUN (CAR LST)) (MAPLIST (CDR LST) FUN))))

 PUTD (PERMUTE (LAMBDA (LST1 LST2 LST3)
 ((NULL LST1)
 (NCONC LST2 LST3))
 ((NULL (CDR LST1))
 (NCONC (CONS (CAR LST1) LST3) LST2))
 ((NULL (CDDR LST1))
 (NCONC (PERMUTE (CONS (CAR LST1) LST2))
 (PERMUTE (CONS (CADR LST1) LST3))))
 (PERMUTE (CDDDR LST1) (CONS (CADR LST1) LST3)
 (CONS (CADDR LST1) (CONS (CAR LST1) LST2)))))

 PUTD (MKCODE (LAMBDA (KEYLST)
 ((NULL KEYLST) NIL)
 (CONS (NTH (CAR KEYLST) (PLUS (RANDOM) 1))
 (MKCODE (CDR KEYLST)))))

 PUTD (CODEMATCH (LAMBDA (CODE1 MOVE1 BLACKS CO DE2 MOVE2)
 ((NULL CODE1)

 NL1-8

 (SPACES 40)
 ((EQ (PRIN1 BLACKS) 4))
 (SPACES 2)
 (SAMETYPE CODE2 MOVE2 0)
 NIL)
 ((EQ (CAR CODE1) (CAR MOVE1))
 (CODEMATCH (CDR CODE1)(CDR MOVE1)(ADD1 BLA CKS) CODE2 MOVE2))
 (CODEMATCH(CDR CODE1)(CDR MOVE1) BLACKS (CON S(CAR CODE1)CODE2)
 (CONS (CAR MOVE1) MOVE2))))

 PUTD (SAMETYPE (LAMBDA (CODE MOVE WHITES)
 ((NULL CODE)
 (PRINT WHITES))
 ((MEMBER (CAR CODE) MOVE)
 (SAMETYPE(CDR CODE)(REMBER1(CAR CODE)MOVE) (ADD1 WHITES)))
 (SAMETYPE (CDR CODE) MOVE WHITES)))

 PUTD (READMOVE (LAMBDA (CODE)
 ((NULL CODE) NIL)
 (CONS (RATOM) (READMOVE (CDR CODE)))))

 PUTD (ADD1 (LAMBDA (X)
 (PLUS X 1)))

 PUTD (REMBER1 (LAMBDA (X L)
 ((NULL L) NIL)
 ((EQ X (CAR L)) (CDR L))
 (CONS (CAR L) (REMBER1 X (CDR L)))))

 PUTD (NTH (LAMBDA (L N)
 ((NOT (PLUSP N)) NIL)
 (LOOP
 ((EQ N 1) (CAR L))
 (SETQ N (DIFFERENCE N 1))
 (SETQ L (CDR L)))))

 PUTD (RANDOM (LAMBDA ()
 (SETQ SEED(REMAINDER(PLUS 2113233(TIMES SEED 271821))9999991))
 (QUOTIENT SEED 2499998)))

 PUTD (DRIVER (LAMBDA (RDS WRS)
 (LOOP
 (TERPRI)
 (PRIN1 "$ ")
 (PRINT (APPLY (READ) (READ))))))

 LOOP ((SETQ RDS) (METAMIND))

 Save the program as a text file named METAMI ND.LIB and then
it can be read in with the muLISP command: (RDS METAMIND LIB).
There are many inhancements which could be made suc h as allowing the
player to choose how many colors and how many col umns are in the
code. For the next issue of Newsletter we will p ublish a program
for reversing the roles and making the computer bre ak your code!

